
Other Ensembles in Statistical Mechanics 
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• Other types of external macroscopic constraints can be applied to systems in an 

ensemble; 

• Constraints correspond to external thermodynamics variables; 

• Constraints represent conditions under which we experiment on macroscopic systems; 

• The procedure of finding the distribution of the system among possible microstates is 

similar to that of the canonical ensemble; 

• Both quantum mechanical and classical forms of the ensemble distributions are given. 

Some examples of ensembles 

- Constant pressure – constant temperature 

- Constant volume – constant temperature – constant chemical potential 

(Grand canonical ensemble) 

- Constant volume – constant energy (Micro-canonical ensemble)  

- Constant pressure – constant enthalpy 



Statistical mechanics under constant pressure – constant temperature 
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• How do we treat systems at constant pressure and temperature with statistical mechanics? 

• The system has constant P, constant T, with N interacting molecules; 

• To equilibrate to the desired pressure, the system has flexible walls which allow it to 

change volume; 

• The walls are thermally conducting, allowing exchange of heat energy with the 

surroundings 

• Microscopically, at each volume Vk, the N-molecule system is characterized by quantum 

state j(Vk) with energy Ei(Vk) 

System:  

-N molecules 

-Pressure P 

-Quantum states i 

(for each volume) 

P 



Barostat at P 

N, P, T 

Set-up of the isothermal – isobaric ensemble 
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• Replicas of the system are placed in contact with each other in a large thermal bath / 

barostat apparatus; 

• The walls of the systems are flexible allowing the volume of each system to change; 

Systems are enclosed in a 

rigid container of total 
volume V  

Isolated ensemble at 

fixed total energy E 

• After equilibration, the ensemble is placed in an isolated container with fixed 

volume. This is called the isothermal-isobaric ensemble. 



How does the system volume effect the quantum states? 
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Example: Particle in a cube (box) quantum states depend on the volume of the box, V 
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Pressure for a particle in a 

box state n: 
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The systems in the ensemble are characterized by first binning them according to 

volume, and according to energy levels for that volume 
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Distribution of systems in isothermal-isobaric ensemble among energy levels 

A systems 

E total energy 

V total volume 

E1 E2 E3 
E4 E5 

E6 

Energy bins for V1  

A1 

Energy bins for V2  Energy bins for V3  
… 

1E
1E2E 3E 4E 5E

6E

1A 1A 2E 3E 4E 5E

• Separate systems according 

to volume 

• For each volume bin for 

energy level 



The isothermal-isobaric ensemble 
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• In the isothermal-isochoric ensemble different system volumes may be encountered. 

• Each volume Vk has its corresponding states i of energy Ei(Vk) 

N, P 

E2 (V1) 
N, P 

E3 (V2) 

N, P 

Ei (Vℓ) 

Constraints on the 

ensemble distribution 

The continuous volume variation is  

represented by the summation to simplify notation 

The E, A and V  are mathematical constructs 
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Most probable distribution in the isothermal-isobaric ensemble 
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Find the most probable distribution, subject to constraints of the system: Lagrange 

method of undetermined multipliers   

Number of systems in ensemble with volume Vℓ in state i in most probable distribution 

The ways the members of the ensemble can be distributed 

among systems of volume Vk and states j 

Constraints on  

the distribution 

Each Vk has a set of associated energy levels Ej(Vk)  
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Derivative with respect to the occupancy of state i associated with the volume Vℓ 



Most probable distribution in the isothermal-isobaric ensemble 
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Isothermal – isobaric partition function 
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The probability includes an energy factor and a volume factor! 

Number of systems in ensemble with volume Vℓ in state i in most probable distribution 

The probability of finding a system in the ensemble with volume Vℓ and state i: 
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The undetermined multiplier α can be eliminated as before 
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Isothermal-isobaric partition function 

We construct the statistical mechanical equivalent. Comparing the two allows us to 

identify the Lagrangian multipliers β and δ  (see canonical ensemble derivation) 
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Other undetermined multipliers can be found by using the thermodynamic 

equation of state 
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Average enthalpy: 
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Formulas for the isothermal-isobaric partition function 
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Characteristic thermodynamics function for the isothermal-isobaric ensemble: 
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Sum over energy levels 

Alternative expressions for the isothermal-isobaric ensemble: 
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Fluctuations in the enthalpy and volume distribution 

Variance of the pressure distribution? 

We can show: 

The temperature derivative of the enthalpy is the heat capacity: 

The distribution is very narrow for many molecule systems 
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Does this relate to a thermodynamic quantity? 



Statistical mechanics of open systems: Grand canonical ensemble 

The system set-up: 

• Constant volume 

• Molecule exchange with environment 

• Heat exchange with the environment 
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Semi-

permeable 

membrane 

• A system of constant volume which can exchange heat and molecules with the 

surroundings; 

• For each number of molecules, the system is characterized by a quantum state Ei(N): 

     For 1 molecule:      E1(1),  E2(1),  E3(1),  …,   Ei(1), … 

     For 2 molecules:    E1(2), E2(2),  E3(2), …,  Ei(2), … 

     For 3 molecules:    E1(3), E2(3), E3(3), …, Ei(3), … 

    … 

     For N molecules:   E1(N),  E2(N),  E3(N),  …,  Ei(N), … 

Thermostat at T 

Molecule reservoir at μ 

Volume V 

Molecules μ 

Quantum state i 



Grand canonical ensemble – Open systems 
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• The N-molecule system as a whole is characterized by a quantum state Ei 

• Replicas of the system are placed in contact with each other in a large 

thermal bath / molecule bath 

• After equilibration, the replicas which now have the same μ, T, and V are 

placed in an isolated container  

Isolated ensemble at T and μ 

Total energy in the ensemble E,  

Total number of systems in the ensemble A , 

Total number of molecules in the ensemble N 



The ensemble of systems are characterized by placing each system into a bin 

corresponding to first a particular number of molecules, then to energy levels for that 

number of particles 
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Distribution of systems in grand canonical ensemble among energy levels 

A systems 

E total energy 

N total molecules 

E1 E2 E3 E4 E5 

E6 

Energy bins for N1  

A1 

Energy bins for N2  Energy bins for N3  
… 

1E
1E 2E 3E 4E 5E

6E

1A
1A 2E 3E 4E 5E

First bin for no. of molecules 

Second bin for energy level 



The energy states of ideal gas systems with different numbers of molecules 
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Find the most probable distribution for the states in the grand-canonical ensemble, 

subject to constraints of the system,  

μ,V,T 

E,j(N1) 

μ,V,T 

Ek(N7) 

μ,V,T 

Ei(Nℓ) 

Constraints on the system:  
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Most probable distribution for the Grand Canonical Ensemble 

Number of systems in ensemble with N molecules in state j in most probable distribution 

Probability includes energy (Boltzmann) factor and molecule number factor. 

Grand canonical 

partition function 

Greek letter xi 

The ways the ensemble can be distributed 

among systems with N molecule and state i 

Constraints on 

the distribution 

Find the most probable distribution, subject to constraints of the system,  
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We use the grand canonical partition function to find expressions for mechanical 

variables and the substitute them into a suitable thermodynamic relation:   

Thermodynamic relations for the grand canonical ensemble 





k

kkNj

N j

NE
eeV


 )(),,(

( )

( )

,

( )

1 ln

i

j Nk k

k

E N Ni

N i

E N

N j

E N
e e

V
P

Ve e

 

 
 

 

 

 
 

     
   

 





V

N j

NE

N i

NNE

k

kkNj

i

ee

eeN

N
,

)(

ln
)(







 

























 ln ( , , )d V E d N d P dV        

We construct the statistical mechanical equivalent of a thermodynamic relation and 

compare the two to identify the Lagrange multipliers β and γ   



ln ( , , )PV kT V T 

PV is the characteristic function of the grand canonical ensemble 
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Grand canonical partition function 

G N E PV TS   
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ln ( , , )d V E N d E d N P dV             

Compare this to the thermodynamic relation: TdS dE PdV dN  

kT





Gives: 
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Write the grand canonical partition function in terms of energy levels 

Adding                                   to both sides of the last equation gives:   d E N   

• The grand canonical ensemble can be called the isopotential-isothermal-isochoric 

ensemble 

1

kT
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Fluctuations in the number of molecules in the grand canonical distribution 

The variance of the number of molecule in the systems: 

The distribution is very narrow for many molecule systems 
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The distribution is very narrow for many molecule systems 
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The distribution of the number of particles is narrow Gaussian function for many 

molecule systems 



Microcanonical (isoenergy, isochoric) ensemble 

NVE 

NVE NVE NVE NVE NVE 

Each system is confined with 

• Rigid walls (constant volume) 

• Non-heat conducting walls 

(constant energy)  
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In this ensemble, each system 

does not have contact with the 

external world and so 

mechanics alone would suffice 

to describe the system! 



Statistical mechanics of the microcanonical ensemble 

NVE 

Each system is confined to 

• Constant volume 

• Constant energy, E 

• The energy level may be degenerate, with 

individual states Ej all having energy E 

• Degeneracy is Ω(E) 

• Aj is the occupancy of state j 

A j jA
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Number of ways the systems in the ensemble 

can be distributed + constraint 
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Classical versions of the ensembles 

Classical versions are available for the partition functions of other 

ensembles 

• These expressions, along with the ergodic hypothesis form the basis of 

molecular dynamics and Monte Carlo simulation methods 

• See text for explicit classical forms for all partition functions 


